DISCLAIMER

Authors are responsible for the choice and the presentation of the facts contained in signed articles and for the opinions expressed therein, which are not necessarily those of ISSHA or UNESCO and do not commit the organizations.

The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of ISSHA or UNESCO concerning the legal status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries.

For Bibliographic purposes, this document should be cited as follows:

ISBN 978-87-990827-6-6
TABLE OF CONTENTS

HABs AND CLIMATE CHANGE

Are HABs and their societal impacts expanding and intensifying? A call for answers from the HAB scientific community
Adriana Zingone, Henrik Enevoldsen and Gustaaf M. Hallegraeff

Climate shift triggers shellfish harvesting bans in Uruguay (south west Atlantic Ocean)
Amelia Fabre, Leonardo Ortega, Silvia Méndez and Ana Martínez

Extreme abundant bloom of *Dinophysis ovum* associated to positive SST anomalies in Uruguay
Silvia M. Méndez, Ana Martinez and Amelia Fabre

Characterization of *Dinophysis ovum* as the causative agent of the exceptional DSP event in Uruguay during 2015
Silvia M. Méndez, Francisco Rodriguez, Beatriz Reguera, José M. Franco, Pilar Riobo and Amelia Fabre

Watch out for ASP in the Chilean Subantarctic region
Gemita Pizarro, Máximo Frangópulos, Bernd Krock, Claudia Zamora, Hernán Pacheco, César Alarcón, Carolina Toro, Marco Pinto, Rodrigo Torres and Leonardo Guzmán

Climatic anomalies and harmful flagellate blooms in Southern Chile
Alejandro Clément, Francisca Muñoz, Carmen G. Brito, Nicole Correa, Marcela Saldivia, César Fernández, Felipe Pérez, Carmen P. Maluje, Gustavo Contreras and Osvaldo Egenau

Unprecedented *Alexandrium* blooms in a previously low biotoxin risk area of Tasmania, Australia
Gustaaf Hallegraeff, Christopher Bolch, Scott Condie, Juan José Dorantes-Aranda, Shauna Murray, Rae Quinlan, Rendy Ruwindy, Alison Turnbull, Sarah Ugalde, and Kate Wilson

The extraordinary 2016 autumn DSP outbreak in Santa Catarina, Southern Brazil explained by large-scale oceanographic processes
Luis A. O. Proença, Mathias A. Schramm, Thiago P. Alves and Alberto R. Piola
HAB ECOLOGY

Origins of *Dinophysis* blooms which impact Irish aquaculture
Robin Raine, Sarah Cosgrove, Sheena Fennell, Clynton Gregory, Michelle Barnett, Duncan Purdie, and Rachel Cave

Fine scale physical biological interactions in a *Dinophysis acuminata* population during an upwelling-relaxation transition
Patricio A. Díaz, Manuel Ruiz-Villarreal, Francisco Rodríguez, José Luis Garrido, Beatriz Mourino-Carballido, Pilar Riobó and Beatriz Reguera

Effect of different taxonomic groups on the growth and toxin content in *Gymnodinium catenatum* cultures from the Pacific coast of México

Distribution and abundance os cyst and vegetative cells of harmful dinoflagellates in Quellón Bay, Southeast of Chiloé Island
Leonardo Guzmán, Pablo Salgado, Gissela Labra and Ximena Vivanco

Changes in phytoplankton species composition during various algal blooms in bays of Manzanillo and Santiago Colima, Mexico (April May 2015)
D.U. Hernández-Becerril and H. Villagrán-Lorenzana

Relationship between viable cell transport of the diatom *Didymosphenia geminata* and other invasive species in Tierra del Fuego Island, Chile
Marco Pinto, Máximo Frangópulos, Sebastián Ruiz and Carla Mora

Using a matrix of scales to understand the effects of toxicity components produced by harmful algae
Ian R. Jenkinson

Imaging FlowCytobot provides novel insights on phytoplankton community dynamics
Lisa Campbell, Darren W. Henrichs, Emily E. Peacock, Joe Futrelle and Heidi M. Sosik
First report of the epiphytic genera *Gambierdiscus* and *Ostreopsis* in the coast of El Salvador Eastern Tropical Pacific
Cesiah Rebeca Quintanilla and Oscar Amaya ...80

Systematics and diversity of genus *Ostreopsis* in the East Australian Current region
Arjun Verma, Gurjeet S. Kohli, Mona Hoppenrath, D. Tim Harwood, Unnikrishnan Kuzhiumpambil, Peter J. Ralph and Shauna A. Murray ...84

Notes on morphology, phylogeny and toxicity of a dominant community of toxic benthic dinoflagellates from southern central coast of Cuba

Ecophysiological responses of the toxic species *Ostreopsis cf ovata* under different water motion conditions. Preliminary results.
Magda Vila, Valentina Giussani, Laia Viure, Élida Alechaga, Encarnación Moyano, Soraya Hernández-Llamas and Elisa Berdalet ...92

Influence of environmental factors on the bloom dynamics of the benthic dinoflagellate *Ostreopsis cf. ovata* in the Mediterranean Sea
Stefano Accoroni, Salvatore Pichieri, Tiziana Romagnoli, Emanuela Razza, Neil Ellwood and Cecilia Totti ...96

Distribution of cyanobacteria blooms in the Baltic Sea
Bengt Karlson, Kari Eilola, Johannes Johansson, Johanna Linders, Malin Mohlin, Anna Willstrand Wranne and Irene Wåhlström ...100
Occurrence of nodularin in a cyanobacterial bloom in a shrimp farm in South Brazil

Monitoring of cyanobacterial populations and the detection of cyanotoxin genes in Billings Reservoir (Diadema/São Paulo - Brazil)
Matheus Santos Freitas Ribeiro, Fellipe Henrique Martins Moutinho, Werner S. Hanisch, Cristina Viana Niero and Cristina Souza Freire Nordi .. 108

TOXICOLOGY

Chemical and analytical sciences in a whirlwind of global change
Philipp Hess .. 112

Biotransformation and chemical degradation of paralytic shellfish toxins in mussels
Michael A. Quilliam, Aifeng Li, Nancy Lewis, Pearse McCarron, Krista Thomas and John A. Walter 118

Benzoyl analogs of the dinoflagellate *Gymnodinium catenatum* from the Gulf of California and the Pacific coast of Mexico as characterized by LC-MS/MS and NMR
Lorena M. Durán-Riveroll, Bernd Krock, Allan Cembella, Javier Peralta-Cruz, José J. Bustillos-Guzmán and Christine J. Band-Schmidt .. 122

Physico-chemical and functional characterization of Portimine purified from *Vulcanodinium rugosum* strain IFR-VRU-01
Claire Lamoise, Amandine Gaudin, Philipp Hess, Véronique Séchet, Robert Thai, Denis Servent, Sophie Zinn-Justin and Rómulo Aráoz ... 126

Five years of application of the receptor binding assay (RBA) on seafood products and threatened species during outbreaks HABs in El Salvador
Oscar Amaya, Marie-Yasmine Dehraoui Bottein, Tod Leighfield and Gerardo Ruiz 130

Paralytic Shellfish Poisoning and Pet Dogs in Southern Chile
Leonardo Guzmán, Cristina Hernández, Gemita Pizarro, Claudia Zamora and Sandra Silva 134
Phylogenetic Analysis of Acetyl CoA Carboxylases in Dinoflagellates
Saddef Haq, Allen R. Place and Tsvetan R. Bachvaroff

Detection of a gene encoding for saxitoxin biosynthesis (sxtU) in non-toxic Alexandrium fraterculus
Ana Martínez, Gabriela Martínez de la Escalera and Claudia Piccini

Assessment of DNA extraction efficiency and quantification based on Alexandrium sp. cultures
Gemma Giménez Papiol and Marta Schuhmacher

Review of Progress in our Understanding of Fish-Killing Microalgae: Implications for Management and Mitigation
Gustaaf Hallegraeff, Juan José Dorantes-Aranda, Jorge Mardones and Andreas Seger

Mitigating fish-killing algal blooms with PAC modified clays: efficacy for cell flocculation and ichthyotoxin adsorption
Andreas Seger and Gustaaf Hallegraeff

Environment-friendly strategies for prevention of harmful algal blooms using algicidal bacteria associated with seagrass beds
Ichiro Imai, Nobuharu Inaba and Tomoko Sakami
Ecophysiological responses of the toxic dinoflagellate *Ostreopsis* cf. *ovata* under different water motion conditions

Magda Vila¹, Valentina Giussani²-⁴, Laia Viure¹, Élida Alechaga³, Encarnación Moyano³, Soraya Hernández-Llamas¹ and Elisa Berdalet¹

¹Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain; ²magda@icm.csic.es, ³Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV) University of Genoa, Italy, ⁴Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain, ⁵Regional Agency for the Protection of the Environment (ARPAL), La Spezia, Italy,

Abstract

Hydrodynamic conditions affect marine microalgae. In the case of some harmful epiphytic species, field observations suggest that water motion and wave action play a selective role in determining their spatial distribution and ecology and regulating cell physiology. In order to obtain new insights on this topic, laboratory experiments were performed with Mediterranean strains of *Ostreopsis* cf. *ovata*. Monospecific cultures were exposed during 3 weeks to the turbulent motion generated by an orbital shaker at 50 rpm in order to simulate the wave movements in their natural habitat. The growth curve and toxin concentrations in the shaken cultures were compared to those maintained under still, control conditions. Shaken *O. cf. ovata* populations entered stationary phase earlier, reached lower cell yield and had 30% lower ovatoxin-a intracellular content compared to control ones. In the two treatments, the cell toxin content in the exponential phase was lower than in the stationary phase. These results contribute to understand the dynamics of benthic HABs and their impacts to the ecosystem and human health.

Keywords: *Ostreopsis*, BHAB, Mediterranean, toxicity, small-scale turbulence

Introduction

Since the late 1990s, the toxic benthic dinoflagellate *Ostreopsis* has caused recurrent blooms in temperate areas, including the Mediterranean coasts. Some of these bloom have been associated with human respiratory disorders (Fig. 1 in Ciminiello et al. 2014 and references therein). Interestingly, these adverse effects only occurred during certain phases of the bloom (Vila et al. 2016). Some of the blooms have also been associated with massive macrofauna mortalities (e.g. Shears and Ross 2009). These negative impacts on the marine habitat and human health have motivated research on *Ostreopsis* bloom dynamics. Field observations suggest that water motion and wave action, among other environmental factors, could play a selective role on the spatial distribution and ecology of this harmful epiphytic species although no clear relationship has been defined so far. For instance in the Mediterranean, *O. cf. ovata* was reported from shaken and slightly shaken habitats by Vila et al. (2001) while it was found in sheltered areas by Accoroni et al. (2012). These apparent contradictory observations arise in part from the lack of quantification of water turbulence in the field, and from the difficulty to discriminate the specific role of this factor from its interaction with other drivers (e.g. depth, light intensity, macroalgal substrates). However, small-scale turbulence has been described to exert negative species-specific effects in some planktonic dinoflagellates (e.g. Berdalet et al., 2011 and references there in). In this study, we present the preliminary results of our investigation of physiological responses of an *Ostreopsis* cf. *ovata* strain exposed to still and turbulent conditions.

Material and Methods

Ostreopsis cf. *ovata* strain "Ostreo BCN1_2014" was isolated from Llavaneres beach, a hot spot where the species bloomed annually since, at least, 2004 but probably since 1998. Aliquots of an exponential monospecific culture grown in f/2 medium were used as inoculum for the 12 experimental (250 ml sterile plastic flasks) cultures with 200 cells·ml⁻¹ as initial concentration. The 12 flasks were incubated at
23°C under a 12-12 hours light-dark cycle, and an irradiance of 150 μmol photon m⁻² s⁻¹. After 24h, the initial cell concentration in each flask was determined on 1-ml Sedgewick Rafter chamber (in duplicate). Six experimental flasks, so called "Control", were maintained under still conditions. The other six flasks, referred to as "Turbulence" were continuously agitated on an orbital shaker at 50 rpm with a 0 – 10° angle inclination variability range in order to simulate the wave movement in their natural habitat. Shaking started on day 1, i.e. 24 hours following inoculation. The experiment lasted for three weeks.

Population growth was characterized by sampling each flask every 2 days. Cell counts on Lugol fixed samples were performed in duplicate as described above. Growth rate was calculated following Guillard (1973) where the growth rate is the slope of the Ln of the cell counts over time during the exponential phase.

At the beginning of the stationary phase (day 11), when the differences between the growth curves in Control and Turbulence treatments were evident, cell size analyses were conducted on around 100 randomly chosen cells from each treatment. Four cell measures were done: dorsoventral diameter including the theca (DVt), dorso-ventral diameter of the inner cytoplasm (DVc), trans-diameter including the theca (Wt) and trans-diameter of the inner cell (Wc). Cell size parameters at each treatment were compared by one-way analyses of variance (one-way ANOVA; STATISTICA). The shape of each measured cell was noted and several microphotographs were also taken using Leica-Leitz DMI8 inverted microscope (Leica Microsystems, Wetzlar, Germany) and ProgRes CapturePro image analysis software (JENOPTIK Laser, Optik Systeme).

Samples for toxin determination were collected twice, during the exponential phase (day 7) and at the end of the experiment (day 23). Each sampling day, the total remaining content of three Control and Turbulence flasks (from 100 to 230 ml depending on the day) were filtered through GF/F fiber filter (Whatman) and kept frozen at -80°C until analysis. Thus, after day 7, the number of flask replicates of each treatment was reduced from 6 to 3. Filters were extracted with 100% methanol and palytoxin and ovatoxins were determined by UHPLC-HRMS using a Hypersil Gold C18 column (100 x 2.1 mm, 1.9 μm, Thermofisher Scientific) and a mobile phase gradient elution of acetonitrile : water (0.1% formic acid) for the chromatographic separation and coupled to a Q-Exact quadrupole-Orbitrap mass spectrometer (Thermofisher Scientific) with electrospray as ionization source in positive ion mode.

In summary, two treatments were done, six 250-ml plastic culture flasks containing O. cf. ovata were maintained under still conditions, used as Control and six 250-ml culture flasks were permanently shaken after day 1 (Turbulence). Parameters measured were cell number, cell size and shape, toxin content and growth rate. The effect of turbulence on these parameters is discussed.

Results and Discussion

Ostreopsis cf. ovata showed the typical sigmoid growth curve and grew similarly under Control (still) and Turbulence (shaken) conditions (Fig. 1). However, the final cell numbers reached in the Controls (5300 cells·ml⁻¹) almost doubled the final yield reached by the Turbulence experiments (3000 cells·ml⁻¹). Furthermore, whereas O. cf. ovata growth rate was similar in both treatments (0.32 d⁻¹ and 0.39 d⁻¹ in Control and Turbulence, respectively), the exponential phase lasted for 11 days in the still flasks and only 5 days in the shaken ones. This result suggests some kind of disturbance on their reproduction or life history processes as has been observed previously in dinoflagellates (e.g. Berdalet et al. (2011) and references there in). In the natural environment, indeed, notably high Ostreopsis cell concentrations have been recorded during long lasting calm sea conditions (e.g. Giussani 2016, Accoroni & Totti 2016 and references there in).

![Fig. 1. Growth curves of O. cf. ovata in the Control (still) and Turbulence (shaken) treatments. Note that, for each treatment, there were 6 replicates until day 7, and 3 replicates until the end of the experiment. Each data point](image-url)
corresponds to the average of two replicate cell counts per flask.

The mean cell size measured in the Turbulence treatment (see Table 1) was statistically significantly larger than cells measured in the Control (p<0.01) considering the four measured parameters.

Table 1. Cell sizes of Control and Turbulence treatments considering all the cells together (without taking account morphotypes).

<table>
<thead>
<tr>
<th>Morphotype</th>
<th>Control</th>
<th>Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Mean Min-Max SD</td>
<td>n Mean Min-Max SD</td>
</tr>
<tr>
<td>DC</td>
<td>97 32.7 22.1-51.0 5.3</td>
<td>101 34.0 20.2-49.9 5.0</td>
</tr>
<tr>
<td>Dc</td>
<td>101 26.4 14.7-45.1 5.5</td>
<td>103 28.2 17.6-41.7 4.4</td>
</tr>
<tr>
<td>Wt</td>
<td>97 24.4 16.0-43.0 6.1</td>
<td>101 24.9 13.6-41.8 4.5</td>
</tr>
<tr>
<td>Wc</td>
<td>101 20.4 11.8-39.1 6.0</td>
<td>103 20.9 10.7-37.5 4.3</td>
</tr>
</tbody>
</table>

Such increase in cell size under turbulence conditions has been described in other experiments and is related to interference of turbulence with cell division. However, as has already been reported by several authors, cultures of Ostreopsis show a large variability in shape and size (e.g. Accoroni et al. 2014). Bravo et al. (2012) classified cultured cells into three size- categories (25–35 µm, 35–50 µm and >50 µm in DV diameter). In this experiment, five morphotypes were identified at the beginning of the stationary phase based on their shape (drop-shaped to round-shaped cells), content (clear or dark cytoplasm), life history stage (vegetative or pellicle cysts), and cell size range (from 20 to 51 µm). The five morphotypes were designated as DropClear (DC), Dark (D), Round (R), Without theca (WT) and others (O). The three dominant morphotypes are illustrated Fig 2.

DC comprised small cells (Table 2) that clearly dominated both treatments (61% in Control and 63% in Turbulence), followed by large dark cells (D) (16% in Control vs. 22% in Turbulence conditions); and finally, by rounded cells (R) (13% vs. 11%). The two last categories (WT and O) represented less than 10% of cell counts.

Table 2. Mean cell sizes (DVt, Wt) of the three dominant morphotypes in Control and Turbulence treatments. Standard deviation is indicated.

<table>
<thead>
<tr>
<th>Morphotype</th>
<th>Control</th>
<th>Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Mean Min-Max SD</td>
<td>n Mean Min-Max SD</td>
</tr>
<tr>
<td>DC</td>
<td>97 31.0 ± 2.8 33.6 ± 3.7</td>
<td></td>
</tr>
<tr>
<td>Dc</td>
<td>101 21.6 ± 3.2 23.0 ± 3.3</td>
<td></td>
</tr>
<tr>
<td>Wt</td>
<td>13 26.8 ± 3.9 23.8 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>Wc</td>
<td>11 20.4 ± 4.3 22.7 ± 3.5</td>
<td></td>
</tr>
</tbody>
</table>

In this study we observed that whereas the most abundant DC cells were larger in the Turbulence treatments than in the Control ones (for the 4 parameters measured), D and R cells were larger in the Control than in the Turbulence flasks (Fig. 3). More studies are required to understand the specific role that each Ostreopsis morphotype plays in the life history of this organism.

Fig. 2. Microphotographs of the three dominant morphotypes at the beginning of the stationary phase (day 11). A) Drop-shaped clear cells ("DC"), B) Dark cells ("D") and C) Round cells ("R").

Fig. 3. Median (horizontal line), 25 and 75 quartiles (box), minimum and maximum (whiskers) and outlier (point) of the dorsoventral diameter including the theca (DVt) measured for
the three dominant morphotypes (see Fig. 2) in Control and Turbulence treatments.

Regarding toxins, OVTXa was the dominant one with small amounts of palytoxin analogues such as OVTXb-g and putative palytoxin (not shown). O. cf. ovata toxin production was four times higher in the stationary phase than in the exponential one (Fig. 4); shaken cells had 30% lower toxin content (23 pg OVTXa·cell⁻¹) than the still cultures (32 pg OVTXa·cell⁻¹). In addition, intracellular toxin concentration was also lower in the Turbulence than in the Control flasks. Such trends have also been observed in Alexandrium minutum and A. catenella (Bolli et al. 2007) exposed to laboratory generated turbulence. These results reinforce the possible link of toxin production with reproduction processes.

![Graph](image)

Fig. 4. Toxin content as OVTXa in Control and Turbulence conditions during the exponential and the stationary phase.

Respiratory outbreaks caused by suspected toxic aerosols seem to occur under low wind episodes (below 4 m·s⁻¹, Vila et al. 2016). In this study, the unshaken control treatments resulted in higher cell densities than the corresponding turbulence treatment. Control stationary phase cells also had higher toxin content per cell. Though it is not possible to extrapolate the results of this laboratory study to the natural events with certainty, the data do indicate that calm conditions may have allowed higher densities of more toxic stationary phase cells to accumulate. Release of these toxins from this higher biomass population, either by excretion or by lysis of senescent cells, accompanied by onshore wind direction, may account for observed intermitant respiratory illness. More work is needed, but results of this study do provides a new piece to the puzzle with respect to understand the Ostreopsis bloom and its negative effects on human health.

Acknowledgements

This study was supported by the CTM2014-53818-R (OstreoRisk) and CTQ2015-63968-C2-1-P projects funded by the Spanish Government (MINECO), the financial assistance of the European Union under the ENPI CBC Mediterranean Sea Basin Programme (M3-HABs project). Authors belong to Quality Groups of Catalanian Government 2014 SGR 1642, 2014 SGR 588 and 2014 SGR 539. The authors thank Ana Arós for technical assistance.

References

INDEX

abalone .. 38
Akashiwo sanguinea 62, 63, 139
Alexandrium ... 15, 16, 18, 19, 20, 32, 34, 38,
39, 40, 41, 58, 59, 60, 62, 63, 64, 70, 71,
72, 77, 95, 111, 118, 126, 134, 136, 142,
143, 144, 145, 146, 147, 148, 149, 150, 152,
153, 154, 155, 156, 157, 162
A. catenella 32, 34, 58, 70, 71, 134, 136,
153, 154, 156, 157
A. fundyense 40, 59, 77
A. minutum 62, 63, 95
A. ostenfeldii 114, 126
A. pacificum 38
A. tamarensis 19, 20, 38, 40, 145, 162
algal bloom .. 14, 62, 63, 66, 80, 100, 112, 132,
150, 151, 152, 153, 156, 159, 160
algal culture 55, 120, 157
algicidal bacteria 160, 161, 162, 163
Amoebophrya 140
Amphidinium 90, 138
Anabaena 100
anatoxin .. 108, 109
Aphanizomenon 100, 102, 103, 110, 142
aquaculture 15, 19, 38, 42, 46, 49, 105, 107,
112, 116, 132, 146, 147, 150, 151, 156, 159
Argentina 24 42 66
Artemia salina 104, 106
Azadinium 15
Azaspiracids 15
Bahia Manzanillo 62, 63
barnacles 134, 135
benthic dinoflagellates 90, 90, 97
benthic HAB 92
bentonites 158
bioassay 42, 114, 134, 150, 151
BMAA .. 115
brevetoxin 15 54, 154, 158
Brazil 23 24 42 43 44 45 104 105 108 110
California 55, 122, 123, 125
Caribbean 88, 89, 91, 132
CFF ... 80, 82
Chattonella 54, 55, 57, 150, 151, 152, 153,
154, 155, 156, 157, 160, 161
C. antiqua 160, 161
C. marina 54, 55, 151, 153, 156, 157
Chile .. 16, 30, 31, 32, 33, 34, 35, 36, 58, 61,
66, 68, 69, 134, 136, 150, 151, 155, 157
Chilean fjords 30, 31, 134
chlorophyll a 44, 100
ciguatera 16, 80, 90
ciguatoxins 80, 88, 89, 115
climate change 16, 18, 34, 40, 79, 82, 112,
146, 149
copepods 32, 72
coral reef 80, 88, 90, 91
Crassostrea 38, 39, 130, 131
C. gigas 38, 39
culture collection 147, 149
cyanobacteria 62, 100, 101, 102, 104, 105,
107, 108, 109, 110, 111, 115, 142, 146, 160
cyanotoxin 108, 109, 110, 111
cyclic imine toxins 115 126
Cylindrospermopsis raciborskii 143
cyst 41, 56, 58, 59, 60, 77, 97, 99, 135
diarrhetic shellfish poisoning .. 22 42 26, 50,
75
diarrhetic shellfish toxins 18, 18, 59
Didymosphenia geminata 66, 68
dinoflagellates 14 26 30, 32, 40, 41, 42, 54,
58, 60, 62, 63, 76, 78, 80, 81, 88, 90, 92,
93, 96, 97, 118, 138, 139, 140, 141, 142,
143, 144, 148, 151 161
Dinophysis 15, 16, 18, 19, 20, 22, 23, 24, 26,
27, 28, 42, 43, 45, 46, 47, 48, 50, 51,
52, 53, 58, 59, 62, 63, 64, 74, 75, 76,
77, 78, 79, 114
D. acuminata 18, 19, 20, 23, 26, 42, 45, 50,
52, 58, 59
D. acuminata complex 18, 19, 20, 26, 45
D. acuta.......................... 46, 47, 48, 58
D. caudata.......................... 62, 63
Dolichospermum.................. 100, 109, 110
domoic acid.......................... 63, 113

East China Sea.......................... 57
eutrophication.................. 15, 98, 100, 112, 163

Fibrocapsa japonica.................. 161
fish. 15, 34, 35, 70, 72, 73, 80, 84, 107, 112, 115, 130, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160
fish kill.......................... 150, 154
fish-killing algae.............. 151, 152, 153, 155, 156, 159

Galician Rias.......................... 50
Gambierdiscus. 15, 16, 70, 71, 80, 81, 82, 88, 89, 115, 140

G. australis.......................... 140

gill cell.......................... 155, 156, 157, 158
global change.......................... 112
global warming.......................... 97
glycocalyx.......................... 73

Gomphonema.......................... 68
gymnoclini.......................... 154
Gymnodinium catenatum..... 18, 19, 38, 54, 62, 63, 64, 118, 122, 123, 154

HAB monitoring.................. 34, 49, 143, 146, 155
haemolytic assay.................. 89

Heterocapsa.......................... 161

Heterosigma. 58, 150, 152, 153, 154, 155, 161, 162

HMRMS.......................... 93, 113, 114, 115, 126, 128

HTS.................................. 146

ichthyotoxic.. 34, 72, 132, 151, 152, 153, 154, 157

invasive species.................. 66, 68, 81

Karenia.. 48, 64, 70, 71, 72, 73, 74, 75, 76, 79, 126, 139, 140, 150, 151, 152, 153, 154, 157, 161
K. brevis.......................... 75, 139, 140, 154, 157
K. mikimotoi.......................... 153, 161

Karlodinium.. 139, 140, 150, 152, 153, 154, 155
K. veneficum.......................... 139, 140, 152, 154
kelp seaweed.......................... 134

Korea.......................... 116, 143, 150, 156, 159

LC-MS/MS.... 31, 84, 85, 88, 89, 113, 119, 120, 122 123, 124, 125, 128

Lingulodinium polyedrum.................. 58, 60

LSU.................................. 90

management.. 14, 15, 66, 68, 71, 115, 116, 146, 147, 163
mass spectrometry.... 15, 30, 113, 122, 123, 124, 125, 138, 141
mcgE.................................. 109, 110, 111

Mediterranean Sea..................... 59, 95, 97, 98
Mesodinium.................... 49, 50, 51, 52, 78
Mexican Pacific.................... 55, 62, 63

microcystins.. 104, 105, 107, 109, 110, 111

Microcystis.......................... 107, 109, 110, 111
mitigation.................... 74, 156, 158, 160

monitoring.. 14, 15, 16, 18, 19, 27, 30, 32, 36, 38, 42, 43, 44, 45, 48, 59, 62, 74, 79, 110, 112, 115, 124, 127, 131, 146, 147, 148, 149

mouse bioassay.. 15, 18, 27, 43, 58, 59, 113, 131, 134

New Zealand.... 35, 37, 84, 85, 87, 126, 150

nicotinic acetylcholine receptors........ 126
Nigeria............................... 114

Nodularia. 100, 102, 104, 105, 106, 107
nodularin.......................... 104, 105, 106

North Atlantic........................ 104

okadaic acid.. 26, 42, 45, 49, 61, 75, 88, 89

Ostreopsis 15, 70, 71, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99

Ostreopsis cf. ovata 92, 93, 96, 98

Ostreopsis cf. siamensis............. 85

Ostreopsis siamensis.................. 86

ovatoxins (OVTXs)................. 96

palytoxin.................. 84, 88, 89, 90, 93, 95, 96

paralytic shellfish poison.. 38, 80, 113, 118
paralytic shellfish toxin. 18, 54, 58, 118, 122, 142
passive sampling.......................... 112, 114
PCR.......................... 27, 89, 109, 110, 142, 143, 146
Phormidium.................................. 110
Planktothrix agardhii..................... 108, 109
Prorocentrum... 42, 62, 63, 74, 75, 76, 80, 81, 88, 89, 90, 114, 140
Protoceratium reticulatum............... 58
Protothecae.......................... 63
Prymnesium............. 150, 153, 154, 157, 158
P. parvum......................... 153, 154, 157, 158
Pseudo-nitzschia... 15, 16, 17, 30, 31, 32, 33, 62, 63, 74, 113, 151
PSP... 32, 38, 55, 72, 113, 130, 131, 132, 134, 135, 136, 142, 144, 147
PST. 18, 38, 39, 41, 55 58, 59 60, 72, 73, 118, 119 120 130 131 132 134, 135, 136, 147 154
PTX-2.............................. 61
Pyrocystis.......................... 118, 130, 131, 144
P. bahamense......................... 130
qPCR.................................. 38, 142, 146
raphidophyte.......................... 54, 154, 156, 162
receptor binding assay........ 127, 129, 130, 131
Rhizosolenia.......................... 62, 63, 77, 151
Richelia intracellularis........... 77
risk assessment.......................... 39
risk management......................... 115
RTgill-W1......................... 152, 156, 157
saxitoxin... 59 115 122, 123, 130, 131, 132, 135, 142, 154
Scrippsiella trochoidea............... 63
seagrass......... 84, 85, 160, 161, 162, 163, 164
sediment........ 39, 40, 41, 58, 59, 60, 101
Skeletonema.................. 62, 63
Southern Chile.................. 34, 60
SPE.......................... 126, 127
sub-toxic levels.................. 30, 31
Symbiodinium.................. 140
toxicity... 20, 31, 32, 34, 38, 40, 54, 55, 58, 70, 72, 75, 80, 90, 92, 104, 105, 106, 107, 125, 130, 132, 136, 144, 150
transcriptome.................. 140, 141
transcriptomics.................. 143
UHPLC.......................... 93, 115
Uruguay... 18, 19, 22, 23, 24, 26, 27, 28, 44, 45, 142, 143, 145
Vulcanodinium.................. 15, 114, 126
Vulcanodinium rugosum............ 126
AUTHOR INDEX

Accoroni, Stefano ... 96
Atarcalón, César .. 30
Alechaga, Élida .. 92
Alonso Hernández, Carlos Manuel 88
Alves, Thiago P. .. 42
Amaya, Oscar .. 80, 130
Árbez, Rómulo ... 126
Arjun Verma .. 38
Bachvaroff, Tsvetan R. 138
Band-Schmidt, Christine J. 54, 122
Barnett, Michelle ... 46
Bentk Carlson .. 100
Berdalet, Elisa .. 92
Bolch, Christopher ... 38
Brito, Carmen G. ... 34
Bustillos-Guzmán, José J. 54, 122
Campbell, Lisa .. 74
Cave, Rachel ... 46
Cembella, Allan .. 122
Clément, Alejandro .. 34
Condie, Scott .. 38
Contreras, Gustavo .. 34
Correa, Nicole ... 34
Cosgrove, Sarah ... 46
Costa, Carolina M. .. 104
Costa, Luiza Dy F. .. 104
Cristina Hernández ... 134
Dechraoui Bottein, Marie-Yasmine 130
Díaz Asencio, Lisbet ... 88
Díaz, Patricio A. .. 50
Dorantes-Aranda, Juan José 38, 150
Durán-Riveroll, Lorena M. 122
Egenau, Osvaldo ... 34
Eiola, Kari ... 100
Ellwood, Neil .. 96
Enevoldsen, Henrik ... 14
Fabre, Amelia ... 18, 22, 26
Fennell, Sheena ... 46
Fernandes, Luciano Felicio 88
Fernández, César ... 34
Fernández-Herrera, Leyberth J. 54
Franco, José M. .. 26
Frangópulos, Máximo 30, 66
Futrelle, Joe ... 74
Garrido, José Luis ... 50
Gaudin, Amandine .. 126
Geraldo K. Foes ... 104
Giménez Papiol, Gemma 146
Giussani Valentina .. 92
Gregory, Cllynton .. 46
Guzmán, Leonardo ... 30, 58, 134
Hallegraeff, Gustaaf 14, 38, 150, 156
Hanisch, Werner S. 108
Haq, Sadef ... 138
Harwood, D. Tim .. 84
Henrichs, Darren W. 74
Hernández-Becerril, David U. 62
Hernández-Llamas, Soraya 92
Hernández-Sandoval, Francisco E. 54
Hess, Philipp ... 112, 126
Hoppenrath, Mona .. 84
Imai, Ichiro .. 160
Inaba, Nobuharu .. 160
Jenkinson, Ian R. ... 70
Johansson, Johannes 100
Justin, Sophie Zinn .. 126
Kohli, Gurjeet S. ... 84
Krock, Bernd .. 30, 122
Kurth, Nathália ... 104
Kuzhimparambil, Unnikrishnan 84
Labra, Gissela ... 58
Lamoise, Claire ... 126
Leighfield, Tod ... 130
Lewis, Nancy ... 118
Leyva-Valencia, Ignacio 54
Li, Aifeng .. 118
Linders, Johanna ... 100
Litaker, Richard Wayne 88
López-Cortés, David J. 54
Mafra Jr, Luiz Laurento 88
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maluje, Carmen P.</td>
<td>34</td>
</tr>
<tr>
<td>Mardones, Jorge</td>
<td>150</td>
</tr>
<tr>
<td>Martínez, Ana</td>
<td>18, 22, 142</td>
</tr>
<tr>
<td>Martínez de la Escalera, Gabriela</td>
<td>142</td>
</tr>
<tr>
<td>McCarron, Pearse</td>
<td>118</td>
</tr>
<tr>
<td>Méndez, Silvia</td>
<td>18, 22, 26</td>
</tr>
<tr>
<td>Mohlin, Malin</td>
<td>100</td>
</tr>
<tr>
<td>Mora, Carla</td>
<td>66</td>
</tr>
<tr>
<td>Moreira González, Angel Ramón</td>
<td>88</td>
</tr>
<tr>
<td>Moutinho, Fellipe Henrique Martins</td>
<td>108</td>
</tr>
<tr>
<td>Moyano, Encarnación</td>
<td>92</td>
</tr>
<tr>
<td>Muñoz, Francisca</td>
<td>34</td>
</tr>
<tr>
<td>Murray, Shauna</td>
<td>38, 84</td>
</tr>
<tr>
<td>Niero, Cristina Viana</td>
<td>108</td>
</tr>
<tr>
<td>Nordi, Cristina Souza Freire</td>
<td>108</td>
</tr>
<tr>
<td>Núñez-Vázquez, Erick J</td>
<td>54</td>
</tr>
<tr>
<td>Ortega, Leonardo</td>
<td>18</td>
</tr>
<tr>
<td>Pacheco, Hernán</td>
<td>30</td>
</tr>
<tr>
<td>Pacheco, Lucas A.</td>
<td>104</td>
</tr>
<tr>
<td>Peacock, Emily E.</td>
<td>74</td>
</tr>
<tr>
<td>Peralta-Cruz, Javier</td>
<td>122</td>
</tr>
<tr>
<td>Peraza Escarrá, Rosely</td>
<td>88</td>
</tr>
<tr>
<td>Pérez, Felipe</td>
<td>34</td>
</tr>
<tr>
<td>Piccini, Claudia</td>
<td>142</td>
</tr>
<tr>
<td>Pichiari, Salvatore</td>
<td>96</td>
</tr>
<tr>
<td>Pinto, Marco</td>
<td>30, 66</td>
</tr>
<tr>
<td>Piola, Alberto R.</td>
<td>42</td>
</tr>
<tr>
<td>Pizarro, Gemita</td>
<td>30, 134</td>
</tr>
<tr>
<td>Place, Allen R.</td>
<td>138</td>
</tr>
<tr>
<td>Proença, Luís A. O.</td>
<td>42</td>
</tr>
<tr>
<td>Purdie, Duncan</td>
<td>46</td>
</tr>
<tr>
<td>Quilliam, Michael A.</td>
<td>118</td>
</tr>
<tr>
<td>Quinlan, Rae</td>
<td>38</td>
</tr>
<tr>
<td>Quintanilla, Cesiah Rebeca</td>
<td>80</td>
</tr>
<tr>
<td>Raine, Robin</td>
<td>46</td>
</tr>
<tr>
<td>Ralph, Peter J</td>
<td>84</td>
</tr>
<tr>
<td>Ramírez-Rodríguez, Dulce V</td>
<td>54</td>
</tr>
<tr>
<td>Razza, Emanuela</td>
<td>96</td>
</tr>
<tr>
<td>Reguera, Beatriz</td>
<td>26, 50</td>
</tr>
<tr>
<td>Ribeiro, Matheus Santos Freitas</td>
<td>108</td>
</tr>
<tr>
<td>Riobo, Pilar</td>
<td>26, 50, 88</td>
</tr>
<tr>
<td>Rodríguez, Francisco</td>
<td>26, 50, 88</td>
</tr>
<tr>
<td>Romagnoli, Tiziana</td>
<td>96</td>
</tr>
<tr>
<td>Ruiz, Gerardo</td>
<td>130</td>
</tr>
<tr>
<td>Ruiz, Sebastián</td>
<td>66</td>
</tr>
<tr>
<td>Ruivindly, Rendy</td>
<td>38</td>
</tr>
<tr>
<td>Sakami, Tomoko</td>
<td>160</td>
</tr>
<tr>
<td>Saldivia, Marcela</td>
<td>34</td>
</tr>
<tr>
<td>Salgado, Pablo</td>
<td>58</td>
</tr>
<tr>
<td>Schramm, Mathias A.</td>
<td>42</td>
</tr>
<tr>
<td>Schuhmacher, Marta</td>
<td>146</td>
</tr>
<tr>
<td>Séchet, Véronique</td>
<td>126</td>
</tr>
<tr>
<td>Seger, Ana</td>
<td>150, 156</td>
</tr>
<tr>
<td>Servent, Denis</td>
<td>126</td>
</tr>
<tr>
<td>Silva, Sandra</td>
<td>134</td>
</tr>
<tr>
<td>Sosik, Heidi M.</td>
<td>74</td>
</tr>
<tr>
<td>Thai, Robert</td>
<td>126</td>
</tr>
<tr>
<td>Thomas, Krista</td>
<td>118</td>
</tr>
<tr>
<td>Toro, Carolina</td>
<td>30</td>
</tr>
<tr>
<td>Torres, Rodrigo</td>
<td>30</td>
</tr>
<tr>
<td>Totti, Cecilia</td>
<td>96</td>
</tr>
<tr>
<td>Turnbull, Alison</td>
<td>38</td>
</tr>
<tr>
<td>Ugalde, Sarah</td>
<td>38</td>
</tr>
<tr>
<td>Vandersea, Mark W.</td>
<td>88</td>
</tr>
<tr>
<td>Vila, Magda</td>
<td>92</td>
</tr>
<tr>
<td>Villagrán-Lorenzana, Héctor</td>
<td>62</td>
</tr>
<tr>
<td>Viure, Laia</td>
<td>92</td>
</tr>
<tr>
<td>Vivanco, Ximena</td>
<td>58</td>
</tr>
<tr>
<td>Wählström, Irene</td>
<td>100</td>
</tr>
<tr>
<td>Walter, John A.</td>
<td>118</td>
</tr>
<tr>
<td>Wasielewsky Jr, Wilson</td>
<td>104</td>
</tr>
<tr>
<td>Wilson, Kate</td>
<td>38</td>
</tr>
<tr>
<td>Wranne, Anna Willstrand</td>
<td>100</td>
</tr>
<tr>
<td>Yunes, João S.</td>
<td>104</td>
</tr>
<tr>
<td>Zamora, Claudia</td>
<td>30, 134</td>
</tr>
<tr>
<td>Zingone, Adriana</td>
<td>14</td>
</tr>
<tr>
<td>Zumaya-Higuera, Miriam G.</td>
<td>54</td>
</tr>
</tbody>
</table>
PROCEEDINGS OF THE 17TH
INTERNATIONAL CONFERENCE ON HARMFUL ALGAE